Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.512
Filtrar
1.
J Virol ; 98(1): e0183023, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38088560

RESUMO

Usutu virus (USUV) and West Nile virus (WNV) are closely related emerging arboviruses belonging to the Flavivirus genus and posing global public health concerns. Although human infection by these viruses is mainly asymptomatic, both have been associated with neurological disorders such as encephalitis and meningoencephalitis. Since USUV and WNV are transmitted through the bite of an infected mosquito, the skin represents the initial site of virus inoculation and provides the first line of host defense. Although some data on the early stages of WNV skin infection are available, very little is known about USUV. Herein, USUV-skin resident cell interactions were characterized. Using primary human keratinocytes and fibroblasts, an early replication of USUV during the first 24 hours was shown in both skin cells. In human skin explants, a high viral tropism for keratinocytes was observed. USUV infection of these models induced type I and III interferon responses associated with upregulated expression of various interferon-stimulated genes as well as pro-inflammatory cytokine and chemokine genes. Among the four USUV lineages studied, the Europe 2 strain replicated more efficiently in skin cells and induced a higher innate immune response. In vivo, USUV and WNV disseminated quickly from the inoculation site to distal cutaneous tissues. In addition, viral replication and persistence in skin cells were associated with an antiviral response. Taken together, these results provide a better understanding of the pathophysiology of the early steps of USUV infection and suggest that the skin constitutes a major amplifying organ for USUV and WNV infection.IMPORTANCEUsutu virus (USUV) and West Nile virus (WNV) are closely related emerging Flaviviruses transmitted through the bite of an infected mosquito. Since they are directly inoculated within the upper skin layers, the interactions between the virus and skin cells are critical in the pathophysiology of USUV and WNV infection. Here, during the early steps of infection, we showed that USUV can efficiently infect two human resident skin cell types at the inoculation site: the epidermal keratinocytes and the dermal fibroblasts, leading to the induction of an antiviral innate immune response. Moreover, following cutaneous inoculation, we demonstrated that both viruses can rapidly spread, replicate, and persist in all distal cutaneous tissues in mice, a phenomenon associated with a generalized skin inflammatory response. These results highlight the key amplifying and immunological role of the skin during USUV and WNV infection.


Assuntos
Infecções por Flavivirus , Flavivirus , Tropismo Viral , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Camundongos , Antivirais , Culicidae , Infecções por Flavivirus/virologia , Interferons , Febre do Nilo Ocidental/virologia , Pele/imunologia , Pele/patologia , Pele/virologia , Técnicas In Vitro
2.
J Virol ; 97(12): e0127223, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38009914

RESUMO

IMPORTANCE: Human poxvirus infections have caused significant public health burdens both historically and recently during the unprecedented global Mpox virus outbreak. Although vaccinia virus (VACV) infection of mice is a commonly used model to explore the anti-poxvirus immune response, little is known about the metabolic changes that occur in vivo during infection. We hypothesized that the metabolome of VACV-infected skin would reflect the increased energetic requirements of both virus-infected cells and immune cells recruited to sites of infection. Therefore, we profiled whole VACV-infected skin using untargeted mass spectrometry to define the metabolome during infection, complementing these experiments with flow cytometry and transcriptomics. We identified specific metabolites, including nucleotides, itaconic acid, and glutamine, that were differentially expressed during VACV infection. Together, this study offers insight into both virus-specific and immune-mediated metabolic pathways that could contribute to the clearance of cutaneous poxvirus infection.


Assuntos
Metaboloma , Pele , Vírus Vaccinia , Vaccinia , Animais , Camundongos , Citometria de Fluxo , Perfilação da Expressão Gênica , Glutamina/metabolismo , Espectrometria de Massas , Nucleotídeos/metabolismo , Pele/imunologia , Pele/metabolismo , Pele/virologia , Vaccinia/imunologia , Vaccinia/metabolismo , Vaccinia/virologia , Vírus Vaccinia/metabolismo , Carga Viral
3.
Nat Commun ; 14(1): 3928, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402742

RESUMO

Tissue-resident memory (TRM) CD8+ T cells are largely derived from recently activated effector T cells, but the mechanisms that control the extent of TRM differentiation within tissue microenvironments remain unresolved. Here, using an IFNγ-YFP reporter system to identify CD8+ T cells executing antigen-dependent effector functions, we define the transcriptional consequences and functional mechanisms controlled by TCR-signaling strength that occur within the skin during viral infection to promote TRM differentiation. TCR-signaling both enhances CXCR6-mediated migration and suppresses migration toward sphingosine-1-phosphate, indicating the programming of a 'chemotactic switch' following secondary antigen encounter within non-lymphoid tissues. Blimp1 was identified as the critical target of TCR re-stimulation that is necessary to establish this chemotactic switch and for TRM differentiation to efficiently occur. Collectively, our findings show that access to antigen presentation and strength of TCR-signaling required for Blimp1 expression establishes the chemotactic properties of effector CD8+ T cells to promote residency within non-lymphoid tissues.


Assuntos
Linfócitos T CD8-Positivos , Memória Imunológica , Receptores de Antígenos de Linfócitos T , Pele , Viroses , Linfócitos T CD8-Positivos/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Pele/imunologia , Pele/virologia , Viroses/imunologia , Movimento Celular , Feminino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Interferon gama/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Receptores CXCR6/metabolismo
4.
J Virol ; 96(17): e0099922, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36000846

RESUMO

Arthritogenic alphaviruses are mosquito-borne arboviruses that include several re-emerging human pathogens, including the chikungunya (CHIKV), Ross River (RRV), Mayaro (MAYV), and o'nyong-nyong (ONNV) virus. Arboviruses are transmitted via a mosquito bite to the skin. Herein, we describe intradermal RRV infection in a mouse model that replicates the arthritis and myositis seen in humans with Ross River virus disease (RRVD). We show that skin infection with RRV results in the recruitment of inflammatory monocytes and neutrophils, which together with dendritic cells migrate to draining lymph nodes (LN) of the skin. Neutrophils and monocytes are productively infected and traffic virus from the skin to LN. We show that viral envelope N-linked glycosylation is a key determinant of skin immune responses and disease severity. RRV grown in mammalian cells elicited robust early antiviral responses in the skin, while RRV grown in mosquito cells stimulated poorer early antiviral responses. We used glycan mass spectrometry to characterize the glycan profile of mosquito and mammalian cell-derived RRV, showing deglycosylation of the RRV E2 glycoprotein is associated with curtailed skin immune responses and reduced disease following intradermal infection. Altogether, our findings demonstrate skin infection with an arthritogenic alphavirus leads to musculoskeletal disease and envelope glycoprotein glycosylation shapes disease outcome. IMPORTANCE Arthritogenic alphaviruses are transmitted via mosquito bites through the skin, potentially causing debilitating diseases. Our understanding of how viral infection starts in the skin and how virus systemically disseminates to cause disease remains limited. Intradermal arbovirus infection described herein results in musculoskeletal pathology, which is dependent on viral envelope N-linked glycosylation. As such, intradermal infection route provides new insights into how arboviruses cause disease and could be extended to future investigations of skin immune responses following infection with other re-emerging arboviruses.


Assuntos
Infecções por Alphavirus , Artrite , Miosite , Polissacarídeos , Vírus do Rio Ross , Pele , Infecções por Alphavirus/complicações , Infecções por Alphavirus/imunologia , Animais , Antivirais/imunologia , Artrite/complicações , Artrite/imunologia , Culicidae/virologia , Células Dendríticas , Modelos Animais de Doenças , Glicosilação , Humanos , Espectrometria de Massas , Camundongos , Monócitos , Miosite/complicações , Miosite/imunologia , Neutrófilos , Polissacarídeos/química , Polissacarídeos/imunologia , Vírus do Rio Ross/imunologia , Pele/imunologia , Pele/virologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia
5.
J Virol ; 96(17): e0086422, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35969080

RESUMO

To infect its human host, herpes simplex virus 1 (HSV-1) must overcome the protective barriers of skin and mucosa. Here, we addressed whether pathological skin conditions can facilitate viral entry via the skin surface and used ex vivo infection studies to explore viral invasion in atopic dermatitis (AD) skin characterized by disturbed barrier functions. Our focus was on the visualization of the onset of infection in single cells to determine the primary entry portals in the epidermis. After ex vivo infection of lesional AD skin, we observed infected cells in suprabasal layers indicating successful invasion in the epidermis via the skin surface which was never detected in control skin where only sample edges allowed viral access. The redistribution of filaggrin, loricrin, and tight-junction components in the lesional skin samples suggested multiple defective mechanical barriers. To dissect the parameters that contribute to HSV-1 invasion, we induced an AD-like phenotype by adding the Th2 cytokines interleukin 4 (IL-4) and IL-13 to healthy human skin samples. Strikingly, we detected infected cells in the epidermis, implying that the IL-4/IL-13-driven inflammation is sufficient to induce modifications allowing HSV-1 to penetrate the skin surface. In summary, not only did lesional AD skin facilitate HSV-1 penetration but IL-4/IL-13 responses alone allowed virus invasion. Our results suggest that the defective epidermal barriers of AD skin and the inflammation-induced altered barriers in healthy skin can make receptors accessible for HSV-1. IMPORTANCE Herpes simplex virus 1 (HSV-1) can target skin to establish primary infection in the epithelium. While the human skin provides effective barriers against viral invasion under healthy conditions, a prominent example of successful invasion is the disseminated HSV-1 infection in the skin of atopic dermatitis (AD) patients. AD is characterized by impaired epidermal barrier functions, chronic inflammation, and dysbiosis of skin microbiota. We addressed the initial invasion process of HSV-1 in atopic dermatitis skin to understand whether the physical barrier functions are sufficiently disturbed to allow the virus to invade skin and reach its receptors on skin cells. Our results demonstrate that HSV-1 can indeed penetrate and initiate infection in atopic dermatitis skin. Since treatment of skin with IL-4 and IL-13 already resulted in successful invasion, we assume that inflammation-induced barrier defects play an important role for the facilitated access of HSV-1 to its target cells.


Assuntos
Dermatite Atópica , Epiderme , Herpes Simples , Herpesvirus Humano 1 , Dermatopatias , Epiderme/patologia , Epiderme/virologia , Herpes Simples/patologia , Herpesvirus Humano 1/fisiologia , Humanos , Inflamação , Interleucina-13 , Interleucina-4 , Pele/patologia , Pele/virologia , Dermatopatias/virologia , Técnicas de Cultura de Tecidos
6.
J Virol ; 96(10): e0187521, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35475668

RESUMO

Persistent infection with some mucosal α-genus human papillomaviruses (HPVs; the most prevalent one being HPV16) can induce cervical carcinoma, anogenital cancers, and a subset of head and neck squamous cell carcinoma (HNSCC). Cutaneous ß-genus HPVs (such as HPV5 and HPV8) associate with skin lesions that can progress into squamous cell carcinoma with sun exposure in Epidermodysplasia verruciformis patients and immunosuppressed patients. Here, we analyzed mechanisms used by E6 proteins from the α- and ß-genus to inhibit the interferon-ß (IFNB1) response. HPV16 E6 mediates this effect by a strong direct interaction with interferon regulatory factor 3 (IRF3). The binding site of E6 was localized within a flexible linker between the DNA-binding domain and the IRF-activation domain of IRF3 containing an LxxLL motif. The crystallographic structure of the complex between HPV16 E6 and the LxxLL motif of IRF3 was solved and compared with the structure of HPV16 E6 interacting with the LxxLL motif of the ubiquitin ligase E6AP. In contrast, cutaneous HPV5 and HPV8 E6 proteins bind to the IRF3-binding domain (IBiD) of the CREB-binding protein (CBP), a key transcriptional coactivator in IRF3-mediated IFN-ß expression. IMPORTANCE Persistent HPV infections can be associated with the development of several cancers. The ability to persist depends on the ability of the virus to escape the host immune system. The type I interferon (IFN) system is the first-line antiviral defense strategy. HPVs carry early proteins that can block the activation of IFN-I. Among mucosal α-genus HPV types, the HPV16 E6 protein has a remarkable property to strongly interact with the transcription factor IRF3. Instead, cutaneous HPV5 and HPV8 E6 proteins bind to the IRF3 cofactor CBP. These results highlight the versatility of E6 proteins to interact with different cellular targets. The interaction between the HPV16 E6 protein and IRF3 might contribute to the higher prevalence of HPV16 than that of other high-risk mucosal HPV types in HPV-associated cancers.


Assuntos
Fator Regulador 3 de Interferon , Interferon beta , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Proteínas Repressoras , Papillomavirus Humano 16/metabolismo , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/metabolismo , Mucosa/virologia , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Papillomaviridae/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Pele/virologia
7.
Sci Rep ; 12(1): 1641, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35102178

RESUMO

H84T BanLec is a molecularly engineered lectin cloned from bananas with broad-spectrum antiviral activity against several RNA viruses. H84T BanLec dimers bind glycoproteins containing high-mannose N-glycans on the virion envelope, blocking attachment, entry, uncoating, and spread. It was unknown whether H84T BanLec is effective against human herpesviruses varicella-zoster virus (VZV), human cytomegalovirus (HCMV), and herpes simplex virus 1 (HSV-1), which express high-mannose N-linked glycoproteins on their envelopes. We evaluated H84T BanLec against VZV-ORF57-Luc, TB40/E HCMV-fLuc-eGFP, and HSV-1 R8411 in cells, skin organ culture, and mice. The H84T BanLec EC50 was 0.025 µM for VZV (SI50 = 4000) in human foreskin fibroblasts (HFFs), 0.23 µM for HCMV (SI50 = 441) in HFFs, and 0.33 µM for HSV-1 (SI50 = 308) in Vero cells. Human skin was obtained from reduction mammoplasties and prepared for culture. Skin was infected and cultured up to 14 days. H84T BanLec prevented VZV, HCMV and HSV-1 spread in skin at 10 µM in the culture medium, and also exhibited dose-dependent antiviral effects. Additionally, H84T BanLec arrested virus spread when treatment was delayed. Histopathology of HCMV-infected skin showed no overt toxicity when H84T BanLec was present in the media. In athymic nude mice with human skin xenografts (NuSkin mice), H84T BanLec reduced VZV spread when administered subcutaneously prior to intraxenograft virus inoculation. This is the first demonstration of H84T BanLec effectiveness against DNA viruses. H84T BanLec may have additional unexplored activity against other, clinically relevant, glycosylated viruses.


Assuntos
Antivirais/farmacologia , Citomegalovirus/efeitos dos fármacos , Infecções por Herpesviridae/tratamento farmacológico , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 3/efeitos dos fármacos , Lectinas de Plantas/farmacologia , Dermatopatias Virais/tratamento farmacológico , Pele/virologia , Animais , Chlorocebus aethiops , Citomegalovirus/crescimento & desenvolvimento , Infecções por Herpesviridae/virologia , Herpesvirus Humano 1/crescimento & desenvolvimento , Herpesvirus Humano 3/crescimento & desenvolvimento , Camundongos Nus , Musa/genética , Lectinas de Plantas/genética , Dermatopatias Virais/virologia , Técnicas de Cultura de Tecidos , Células Vero , Replicação Viral/efeitos dos fármacos
8.
Viruses ; 14(2)2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35216020

RESUMO

To date, 14 human polyomaviruses (HPyVs) have been identified using high-throughput technologies. Among them, MCPyV, HPyV6, HPyV7 and TSPyV present a skin tropism, but a causal role in skin diseases has been established only for MCPyV as a causative agent of Merkel cell carcinoma (MCC) and TSPyV as an etiological agent of Trichodysplasia Spinulosa (TS). In the search for a possible role for cutaneous HPyVs in the development of skin malignant lesions, we investigated the prevalence of MCPyV, HPyV6, HPyV7 and TSPyV in actinic keratosis (AK), a premalignant skin lesion that has the potential to progress towards a squamous cell carcinoma (SCC). One skin lesion and one non-lesion skin from nine affected individuals were analyzed by qualitative PCR. MCPyV was detected in 9 out of 9 lesion biopsies and 6 out of 8 non-lesion biopsies. HPyV6 was detected only in healthy skin, while HPyV7 and TSPyV were not detected in any skin sample. These findings argue against a possible role of cutaneous HPyVs in AK. However, considering the small sample size analyzed, a definitive conclusion cannot be drawn. Longitudinal studies on large cohorts are warranted.


Assuntos
Ceratose Actínica/virologia , Infecções por Polyomavirus/diagnóstico , Polyomavirus/genética , Pele/virologia , Idoso , Idoso de 80 Anos ou mais , Biópsia , DNA Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Ceratose Actínica/patologia , Masculino , Polyomavirus/classificação , Polyomavirus/isolamento & purificação , Infecções por Polyomavirus/virologia , Prevalência , Pele/patologia
9.
Int J Mol Sci ; 23(4)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35216085

RESUMO

The equine sarcoid is one of the most common neoplasias in the Equidae family. Despite the association of this tumor with the presence of bovine papillomavirus (BPV), the molecular mechanism of this lesion has not been fully understood. The transgenization of equine adult cutaneous fibroblast cells (ACFCs) was accomplished by nucleofection, followed by detection of molecular modifications using high-throughput NGS transcriptome sequencing. The results of the present study confirm that BPV-E4- and BPV-E1^E4-mediated nucleofection strategy significantly affected the transcriptomic alterations, leading to sarcoid-like neoplastic transformation of equine ACFCs. Furthermore, the results of the current investigation might contribute to the creation of in vitro biomedical models suitable for estimating the fates of molecular dedifferentiability and the epigenomic reprogrammability of BPV-E4 and BPV-E4^E1 transgenic equine ACFC-derived sarcoid-like cell nuclei in equine somatic cell-cloned embryos. Additionally, these in vitro models seem to be reliable for thoroughly recognizing molecular mechanisms that underlie not only oncogenic alterations in transcriptomic signatures, but also the etiopathogenesis of epidermal and dermal sarcoid-dependent neoplastic transformations in horses and other equids. For those reasons, the aforementioned transgenic models might be useful for devising clinical treatments in horses afflicted with sarcoid-related neoplasia of cutaneous and subcutaneous tissues.


Assuntos
Fibroblastos/virologia , Doenças dos Cavalos/virologia , Cavalos/virologia , Neoplasias/virologia , Papillomaviridae/genética , Sarcoidose/virologia , Dermatopatias/virologia , Animais , Animais Geneticamente Modificados/virologia , Equidae/virologia , Infecções por Papillomavirus/virologia , Pele/virologia , Transcriptoma/genética
10.
J Allergy Clin Immunol ; 149(1): 388-399.e4, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34033843

RESUMO

BACKGROUND: Rubella virus-induced granulomas have been described in patients with various inborn errors of immunity. Most defects impair T-cell immunity, suggesting a critical role of T cells in rubella elimination. However, the molecular mechanism of virus control remains elusive. OBJECTIVE: This study sought to understand the defective effector mechanism allowing rubella vaccine virus persistence in granulomas. METHODS: Starting from an index case with Griscelli syndrome type 2 and rubella skin granulomas, this study combined an international survey with a literature search to identify patients with cytotoxicity defects and granuloma. The investigators performed rubella virus immunohistochemistry and PCR and T-cell migration assays. RESULTS: This study identified 21 patients with various genetically confirmed cytotoxicity defects, who presented with skin and visceral granulomas. Rubella virus was demonstrated in all 12 accessible biopsies. Granuloma onset was typically before 2 years of age and lesions persisted from months to years. Granulomas were particularly frequent in MUNC13-4 and RAB27A deficiency, where 50% of patients at risk were affected. Although these proteins have also been implicated in lymphocyte migration, 3-dimensional migration assays revealed no evidence of impaired migration of patient T cells. Notably, patients showed no evidence of reduced control of concomitantly given measles, mumps, or varicella live-attenuated vaccine or severe infections with other viruses. CONCLUSIONS: This study identified lymphocyte cytotoxicity as a key effector mechanism for control of rubella vaccine virus, without evidence for its need in control of live measles, mumps, or varicella vaccines. Rubella vaccine-induced granulomas are a novel phenotype with incomplete penetrance of genetic disorders of cytotoxicity.


Assuntos
Granuloma/etiologia , Vacina contra Rubéola/efeitos adversos , Linfócitos T/imunologia , Criança , Pré-Escolar , Feminino , Granuloma/genética , Granuloma/imunologia , Granuloma/virologia , Humanos , Lactente , Fenótipo , Rubéola (Sarampo Alemão)/genética , Rubéola (Sarampo Alemão)/imunologia , Rubéola (Sarampo Alemão)/virologia , Pele/imunologia , Pele/virologia
11.
PLoS One ; 16(12): e0261122, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34914770

RESUMO

Fowlpox (FP) is an economically important viral disease of commercial poultry. The fowlpox virus (FPV) is primarily characterised by immunoblotting, restriction enzyme analysis in combination with PCR, and/or nucleotide sequencing of amplicons. Whole-genome sequencing (WGS) of FPV directly from clinical specimens prevents the risk of potential genome modifications associated with in vitro culturing of the virus. Only one study has sequenced FPV genomes directly from clinical samples using Nanopore sequencing, however, the study didn't compare the sequences against Illumina sequencing or laboratory propagated sequences. Here, the suitability of WGS for strain identification of FPV directly from cutaneous tissue was evaluated, using a combination of Illumina and Nanopore sequencing technologies. Sequencing results were compared with the sequence obtained from FPV grown in chorioallantoic membranes (CAMs) of chicken embryos. Complete genome sequence of FPV was obtained directly from affected comb tissue using a map to reference approach. FPV sequence from cutaneous tissue was highly similar to that of the virus grown in CAMs with a nucleotide identity of 99.8%. Detailed polymorphism analysis revealed the presence of a highly comparable number of single nucleotide polymorphisms (SNPs) in the two sequences when compared to the reference genome, providing essentially the same strain identification information. Comparative genome analysis of the map to reference consensus sequences from the two genomes revealed that this field isolate had the highest nucleotide identity of 99.5% with an FPV strain from the USA (Fowlpox virus isolate, FWPV-MN00.2, MH709124) and 98.8% identity with the Australian FPV vaccine strain (FWPV-S, MW142017). Sequencing results showed that WGS directly from cutaneous tissues is not only rapid and cost-effective but also provides essentially the same strain identification information as in-vitro grown virus, thus circumventing in vitro culturing.


Assuntos
Membrana Corioalantoide/virologia , Vírus da Varíola das Aves Domésticas/isolamento & purificação , Varíola Aviária/diagnóstico , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Pele/virologia , Sequenciamento Completo do Genoma/métodos , Animais , Austrália , Embrião de Galinha , Galinhas , Varíola Aviária/virologia , Vírus da Varíola das Aves Domésticas/classificação , Vírus da Varíola das Aves Domésticas/genética , Vírus da Varíola das Aves Domésticas/crescimento & desenvolvimento , Polimorfismo Genético
12.
FEMS Microbiol Lett ; 368(20)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34849758

RESUMO

The prevalence of multidrug-resistant (MDR) strains has caused serious problems in the treatment of burn infections. MDR Enterobactercloacae and Enterobacterhormaechei have been defined as the causative agents of nosocomial infections in burn patients. In this situation, examination of phages side effects on human cell lines before any investigation on human or animal that can provide beneficial information about the safety of isolated phages. The aim of this study was to isolate and identify the specific bacteriophages on MDR E. cloacae and E. hormaechei isolated from burn wounds and to analyze the efficacy, cell viability and cell cytotoxicity of phages on A-375 and HFSF-PI cell lines by MTT (3-(4, 5-dimethylthiazol-2-yl)2,5-diphenyl-tetrazolium bromide) colorimetric assay and lactate dehydrogenase (LDH) release assay. Phages were isolated from urban sewage Isfahan, Iran. Enterobactercloacae strain Iau-EC100 (GenBank accession number: MZ314381) and E. hormaechei strain Iau-EHO100 (GenBank accession number: MZ348826) were sensitive to the isolated phages. Transmission electron microscopy (TEM) results revealed that PɸEn-CL and PɸEn-HO that were described had the morphologies of Myovirus and Inovirus, respectively. Overall, MTT and LDH assays showed moderate to excellent correlation in the evaluation of cytotoxicity of isolated phages. The results of MTT and LDH assays showed that, phages PɸEn-CL and PɸEn-HO had no significant toxicity effect on A375 and HFSF-PI 3 cells. Phage PɸEn-HO had a better efficacy on the two tested cell lines than other phage. Our results indicated that, there were significant differences between the two cytotoxicity assays in phage treatment compared to control.


Assuntos
Bacteriófagos , Queimaduras , Enterobacter cloacae , Enterobacter , Infecção dos Ferimentos , Bacteriófagos/fisiologia , Queimaduras/complicações , Queimaduras/microbiologia , Linhagem Celular , Enterobacter/virologia , Enterobacter cloacae/virologia , Humanos , Pele/microbiologia , Pele/virologia , Infecção dos Ferimentos/etiologia , Infecção dos Ferimentos/microbiologia
13.
Sci Rep ; 11(1): 22868, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819522

RESUMO

Transfer of SARS-CoV-2 from solids to fingers is one step in infection via contaminated solids, and the possibility of infection from this route has driven calls for increased frequency of handwashing during the COVID-19 pandemic. To analyze this route of infection, we measured the percentage of SARS-CoV-2 that was transferred from a solid to an artificial finger. A droplet of SARS-CoV-2 suspension (1 µL) was placed on a solid, and then artificial skin was briefly pressed against the solid with a light force (3 N). Transfer from a variety of solids was detected, and transfer from the non-porous solids, glass, stainless steel, and Teflon, was substantial when the droplet was still wet. The viral titer for the finger was 13-16% or 0.8-0.9 log less than for the input droplet. Transfer still occurred after the droplet evaporated, but was smaller, 3-9%. We found a lower level of transfer from porous solids but did not find a significant effect of solid wettability for non-porous solids.


Assuntos
COVID-19/transmissão , Transmissão de Doença Infecciosa/prevenção & controle , SARS-CoV-2/metabolismo , COVID-19/metabolismo , Contaminação de Equipamentos/prevenção & controle , Contaminação de Equipamentos/estatística & dados numéricos , Humanos , SARS-CoV-2/patogenicidade , Pele/virologia , Carga Viral
14.
Curr Probl Dermatol ; 55: 339-353, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34698023

RESUMO

Cutaneous malignant melanoma (CMM) and nonmelanoma skin cancers (NMSC), squamous cell and basal cell carcinomas, have been increasing at exponential rates for as long as the International Agency for Research on Cancer (IARC) have been collecting data starting from 1955 in some northern European countries and 1960 in most other European countries. Different strains of the human papilloma virus (HPV) have been found in CMM and NMSC biopsies and implicated in the carcinogenic process as a "hit-and-run" mechanism and can spread at exponential rates, especially since the 1960s' sexual revolution. This chapter covers only IARC data for CMM in the European countries from 1960 to 2018, plotted by regions (northern, middle, and southern latitudes and eastern versus western longitudes), countries latitudes, and each country over time, which shows that about half have linear and the other half have exponential increases in CMM. From this analyzed data and published data in the literature, the major risk factors of CMM appear to be light hair color, especially red and white hair (reactive oxygen species and UVA; 320-400 nm), low cutaneous vitamin D3 levels, and HPV after 1960, while there was no apparent risk from exposure to UVB (290-320 nm) or sunburns.


Assuntos
Alphapapillomavirus/efeitos da radiação , Infecções por Papillomavirus/etiologia , Neoplasias Cutâneas/etiologia , Raios Ultravioleta/efeitos adversos , Alphapapillomavirus/patogenicidade , Carcinogênese/efeitos da radiação , Humanos , Infecções por Papillomavirus/patologia , Espécies Reativas de Oxigênio/metabolismo , Fatores de Risco , Pele/metabolismo , Pele/patologia , Pele/efeitos da radiação , Pele/virologia , Neoplasias Cutâneas/patologia
15.
Viruses ; 13(10)2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34696346

RESUMO

Coronavirus disease 2019 (COVID-19) is a multisystem disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), that primarily causes respiratory symptoms. However, an increasing number of cutaneous manifestations associated with this disease have been reported. The aim of this study is to analyze the scientific literature on cutaneous manifestations associated with SARS-CoV-2 by means of a narrative literature review until June 2021. The search was conducted in the following electronic databases: Medline (PubMed), SciELO, and Cochrane Library Plus. The most common cutaneous manifestations in patients with COVID-19 are vesicular eruptions, petechial/purpuric rashes, acral lesions, liveoid lesions, urticarial rash, and maculopapular-erythematous rash. These manifestations may be the first presenting symptoms of SARS-CoV-2 infection, as is the case with acral lesions, vesicular eruptions, and urticaria. In relation to severity, the presence of liveoid lesions may be associated with a more severe course of the disease. Treatment used for dermatological lesions includes therapy with anticoagulants, corticosteroids, and antihistamines. Knowledge of the dermatologic manifestations associated with SARS-CoV-2 contributes to the diagnosis of COVID-19 in patients with skin lesions associated with respiratory symptoms or in asymptomatic patients. In addition, understanding the dermatologic lesions associated with COVID-19 could be useful to establish a personalized care plan.


Assuntos
COVID-19/patologia , Dermatopatias/patologia , Pele/patologia , COVID-19/metabolismo , Exantema/patologia , Exantema/terapia , Exantema/virologia , Humanos , SARS-CoV-2/patogenicidade , Pele/virologia , Dermatopatias/terapia , Dermatopatias/virologia , Fenômenos Fisiológicos da Pele , Urticária/patologia , Urticária/terapia , Urticária/virologia
16.
Sci Rep ; 11(1): 19817, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615949

RESUMO

Recent studies have focused their attention on conjunctivitis as one of the symptoms of coronavirus disease 2019 (COVID-19). Therefore, tear samples were taken from COVID-19 patients and the presence of SARS-CoV-2 was evidenced using Real Time reverse transcription polymerase chain reaction. The main aim of this study was to analyze mRNA expression in the tears of patients with COVID-19 compared with healthy subjects using Next Generation Sequencing (NGS). The functional evaluation of the transcriptome highlighted 25 genes that differ statistically between healthy individuals and patients affected by COVID-19. In particular, the NGS analysis identified the presence of several genes involved in B cell signaling and keratinization. In particular, the genes involved in B cell signaling were downregulated in the tears of COVID-19 patients, while those involved in keratinization were upregulated. The results indicated that SARS-CoV-2 may induce a process of ocular keratinization and a defective B cell response.


Assuntos
COVID-19/genética , Oftalmopatias/virologia , Lágrimas/metabolismo , Transcriptoma , Idoso , Linfócitos B/metabolismo , COVID-19/patologia , COVID-19/virologia , Oftalmopatias/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Queratinas/metabolismo , Masculino , SARS-CoV-2/isolamento & purificação , Análise de Sequência de RNA/métodos , Pele/metabolismo , Pele/patologia , Pele/virologia , Lágrimas/virologia
17.
Soft Matter ; 17(41): 9457-9468, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34612290

RESUMO

The possibility of contamination of human skin by infectious virions plays an important role in indirect transmission of respiratory viruses but little is known about the fundamental physico-chemical aspects of the virus-skin interactions. In the case of coronaviruses, the interaction with surfaces (including the skin surface) is mediated by their large glycoprotein spikes that protrude from (and cover) the viral envelope. Here, we perform all atomic simulations between the SARS-CoV-2 spike glycoprotein and human skin models. We consider an "oily" skin covered by sebum and a "clean" skin exposing the stratum corneum. The simulations show that the spike tries to maximize the contacts with stratum corneum lipids, particularly ceramides, with substantial hydrogen bonding. In the case of "oily" skin, the spike is able to retain its structure, orientation and hydration over sebum with little interaction with sebum components. Comparison of these results with our previous simulations of the interaction of SARS-CoV-2 spike with hydrophilic and hydrophobic solid surfaces, suggests that the "soft" or "hard" nature of the surface plays an essential role in the interaction of the spike protein with materials.


Assuntos
Ligação Proteica , Pele/virologia , Glicoproteína da Espícula de Coronavírus , COVID-19 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo
19.
Front Immunol ; 12: 735643, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552595

RESUMO

Tissue-resident-memory T cells (TRM) populate the body's barrier surfaces, functioning as frontline responders against reencountered pathogens. Understanding of the mechanisms by which CD8TRM achieve effective immune protection remains incomplete in a naturally recurring human disease. Using laser capture microdissection and transcriptional profiling, we investigate the impact of CD8TRM on the tissue microenvironment in skin biopsies sequentially obtained from a clinical cohort of diverse disease expression during herpes simplex virus 2 (HSV-2) reactivation. Epithelial cells neighboring CD8TRM display elevated and widespread innate and cell-intrinsic antiviral signature expression, largely related to IFNG expression. Detailed evaluation via T-cell receptor reconstruction confirms that CD8TRM recognize viral-infected cells at the specific HSV-2 peptide/HLA level. The hierarchical pattern of core IFN-γ signature expression is well-conserved in normal human skin across various anatomic sites, while elevation of IFI16, TRIM 22, IFITM2, IFITM3, MX1, MX2, STAT1, IRF7, ISG15, IFI44, CXCL10 and CCL5 expression is associated with HSV-2-affected asymptomatic tissue. In primary human cells, IFN-γ pretreatment reduces gene transcription at the immediate-early stage of virus lifecycle, enhances IFI16 restriction of wild-type HSV-2 replication and renders favorable kinetics for host protection. Thus, the adaptive immune response through antigen-specific recognition instructs innate and cell-intrinsic antiviral machinery to control herpes reactivation, a reversal of the canonical thinking of innate activating adaptive immunity in primary infection. Communication from CD8TRM to surrounding epithelial cells to activate broad innate resistance might be critical in restraining various viral diseases.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Epiteliais/imunologia , Herpes Genital/imunologia , Herpesvirus Humano 2/imunologia , Imunidade Inata , Memória Imunológica , Células T de Memória/imunologia , Pele/imunologia , Imunidade Adaptativa/genética , Adulto , Idoso , Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Feminino , Perfilação da Expressão Gênica , Herpes Genital/genética , Herpes Genital/metabolismo , Herpes Genital/virologia , Herpesvirus Humano 2/patogenicidade , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata/genética , Interferon gama/genética , Interferon gama/metabolismo , Masculino , Células T de Memória/metabolismo , Células T de Memória/virologia , Pessoa de Meia-Idade , Fenótipo , Pele/metabolismo , Pele/virologia , Transcriptoma
20.
Viruses ; 13(9)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34578405

RESUMO

Papillomavirus L1 and L2, the major and minor capsid proteins, play significant roles in viral assembly, entry, and propagation. In the current study, we investigate the impact of L1 and L2 on viral life cycle and tumor growth with a newly established mouse papillomavirus (MmuPV1) infection model. MmuPV1 L1 knockout, L2 knockout, and L1 plus L2 knockout mutant genomes (designated as L1ATGko-4m, L2ATGko, and L1-L2ATGko respectively) were generated. The mutants were examined for their ability to generate lesions in athymic nude mice. Viral activities were examined by qPCR, immunohistochemistry (IHC), in situ hybridization (ISH), and transmission electron microscopy (TEM) analyses. We demonstrated that viral DNA replication and tumor growth occurred at both cutaneous and mucosal sites infected with each of the mutants. Infections involving L1ATGko-4m, L2ATGko, and L1-L2ATGko mutant genomes generally resulted in smaller tumor sizes compared to infection with the wild type. The L1 protein was absent in L1ATGko-4m and L1-L2ATGko mutant-treated tissues, even though viral transcripts and E4 protein expression were robust. Therefore, L1 is not essential for MmuPV1-induced tumor growth, and this finding parallels our previous observations in the rabbit papillomavirus model. Very few viral particles were detected in L2ATGko mutant-infected tissues. Interestingly, the localization of L1 in lesions induced by L2ATGko was primarily cytoplasmic rather than nuclear. The findings support the hypothesis that the L2 gene influences the expression, location, transport, and assembly of the L1 protein in vivo.


Assuntos
Proteínas do Capsídeo/fisiologia , Mucosa/virologia , Proteínas Oncogênicas Virais/fisiologia , Papillomaviridae/fisiologia , Pele/virologia , Animais , Proteínas do Capsídeo/genética , Transformação Celular Viral , DNA Viral/biossíntese , Feminino , Genoma Viral , Camundongos , Camundongos Nus , Mutação , Proteínas Oncogênicas Virais/genética , Papillomaviridae/genética , Papillomaviridae/patogenicidade , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...